کرانداری عملگرهای میانگینی چزاروی تعمیم یافته بر فضاهای توابع خاص

پایان نامه
چکیده

در این پایان نامه عملگر میانگین چزاروی تعمیم یافته را معرفی کرده و سپس کرانداری این عملگر را روی فضاهای مختلف مانند هاردی ، bmoa و فضاهای بلوخ بررسی می کنیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

عملگرهای خودالحاق تعمیم یافته

در این پایان نامه، ابتدا در زمینه ی عملگرهای خطی و کراندار در فضای هیلبرت که قابل تجزیه به صورت حاصل ضرب دو عملگر خودالحاق هستند، به بررسی می پردازیم و نشان می دهیم یک عملگر نرمال می تواند به حاصل ضرب دو عملگر خودالحاق تجزیه شود اگر و تنها اگر متشابه عملگر الحاقی خود باشد. علاوه بر این مفهوم عملگر خودالحاق تعمیم یافته را که در فضای هیلبرت مختلط تعریف شده است به همراه قضایائی در این باب، ارائه خ...

عملگرهای ضربی بر فضاهای توابع تحلیلی

معرفی فضاهای هیلبرتی و لارنت پرداخته شده است. نقش عملگرهای ضربی بر فضاهای هاردی مورد بررسی قرار گرفته شده است.

فضاهای تعمیم یافته اردوش

فضای اردوش و همین طور فضاهای کامل اردوش در توپولوژی و بخصوص در نظریه ابعاد توپولوژیکی کاملاً آشنا می باشند. توصیفهای مفیدی از این فضا توسط دایکسترا و فان میل به انجام رسیده است. در این پایان نامه ضمن اشاره به کاربردهای قضایای مذکور در فضاهای از نوع اردوش، در فضاهایℓ

15 صفحه اول

فاکتوریل تعمیم یافته

تابع فاکتوریل با استفاده از مفهومی به نام p-ترتیب، به زیرمجموعه حلقه اعداد صحیح تعمیم پذیر است. هدف این نوشتار، آگاهی دادن از چگونگی این تعمیم است. در پایان به مفهوم ایدآل فاکتوریل در حوزه های ددکیند اشاره خواهد شد.

متن کامل

عملگرهای ماتریس کراندار بر فضاهای دنباله ای خاص

این رساله از چهار فصل تشکیل شده است. ابتدا در فصل مقدمه به بیان برخی تعاریف و قضایایی که در فصل های بعدی به آنها نیاز داریم، می پردازیم. در فصل دوم شرایط لازم و کافی برای کرانداری یک عملگر ماتریس بر فضای را بیان و اثبات می کنیم. در فصل سوم به معرفی مقدماتی ماتریس نورلوند، ماتریس میانگین وزندار و ماتریس هاسدورف توسعه یافته پرداخته و در بخش دوم از این فصل کرانداری عملگر ماتریس هاسدورف توسعه یافته...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023